Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effect of Flowfield Non-Uniformities on Emissions Predictions in HSDI Engines

2011-04-12
2011-01-0821
The role of the fluid motion in a diesel engine on mixing and combustion was investigated using the CFD code Kiva-3v. The study considered pre-mixed charge compression ignition (PCCI) combustion that is a hybrid combustion system characterized by early injection timings and high amounts of EGR dilution to delay the start and lower the temperature of combustion. The fuel oxidizer mixture is not homogeneous at the start of combustion and therefore requires further mixing for complete combustion. PCCI combustion systems are characterized by relatively high CO and UHC emissions. This work investigates attenuating CO emissions by enhancing mixing processes through non-uniform flowfield motions. The fluid motion was characterized by the amount of average angular rotation about the cylindrical axis (swirl ratio) and the amount of non-uniform motion imparted by the relative amounts of mass inducted through tangential and helical intake ports in a 0.5L HSDI diesel engine.
Technical Paper

Model Parameter Sensitivity of Mixing and UHC/CO Emissions in a PPCI, Low-Load Optical Diesel Engine

2011-04-12
2011-01-0844
The present study attempted to model experimental results obtained on an optical engine at the Sandia National Laboratory. Measurements of in-cylinder unburned hydrocarbon (UHC) distributions were provided using advanced optical diagnostics on a near production type piston. Previous multidimensional modeling provided accurate pressure profiles and heat release rate (HRR) predictions. However, the experimental UHC distribution was not matched, and the model predicted UHC extending from the bowl into the squish region in the expansion stroke. To explore the causes of this discrepancy a parametric study was performed using a variety of initial conditions, boundary conditions and model constants to explore their effects on the UHC distribution. Of the initial conditions, the swirl ratio was found to have the biggest impact on the UHC distribution.
Technical Paper

Coupling of Scaling Laws and Computational Optimization to Develop Guidelines for Diesel Engine Down-sizing

2011-04-12
2011-01-0836
The present work proposes a methodology for diesel engine development using scaling laws and computational optimization with multi-dimensional CFD tools. A previously optimized 450cc HSDI diesel engine was down-scaled to 400cc size using recently developed scaling laws. The scaling laws were validated by comparing the performance of these two engines, including pressure, HRR, peak and averaged temperature, and pollutant emissions. A novel optimization methodology, which is able to simultaneously optimize multiple operating conditions, was proposed. The method is based on multi-objective genetic algorithms, and was coupled with the KIVA3V Release 2 code to further optimize the down-scaled diesel engine. An adaptive multi-grid chemistry model was used in the KIVA3V code to reduce the computational cost of the optimization. The computations were conducted using high-throughput computing with the CONDOR system.
Technical Paper

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

2010-10-25
2010-01-2206
In-cylinder fuel blending of gasoline with diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 5.5 bar net mean effective pressure (NMEP). Gasoline was introduced with a port-fuel-injection system.
Technical Paper

CFD Study of HCPC Turbocharged Engine

2010-10-25
2010-01-2107
Homogeneous-charge, compression-ignition (HCCI) combustion is triggered by spontaneous ignition in dilute homogeneous mixtures. The combustion rate must be reduced by suitable solutions such as high rates of Exhaust Gas Recirculation (EGR) and/or lean mixtures. HCCI is considered a very effective way to reduce engine pollutant emissions, however only a few HCCI engines have entered into production. HCCI combustion currently cannot be extended to the whole engine operating range, especially to high loads, since the use of EGR displaces air from the cylinder, limiting engine mean effective pressure, thus the engine must be able to operate also in conventional mode. This paper concerns an innovative concept to control HCCI combustion in diesel-fuelled engines. This new combustion concept is called Homogenous Charge Progressive Combustion (HCPC). HCPC is based on split-cycle principle.
Journal Article

Validation of Mesh- and Timestep- Independent Spray Models for Multi-Dimensional Engine CFD Simulation

2010-04-12
2010-01-0626
Resolution of droplet-scale processes occurring within engine sprays in multi-dimensional Computational Fluid Dynamics (CFD) simulations is not possible because impractically refined numerical meshes or time steps would be required. As a result, simulations that use coarse meshes and large time steps suffer from inaccurate predictions of mass, momentum and energy transfer between the spray drops and the combustion chamber gas, or poor prediction of droplet breakup and collision and coalescence processes. Several new spray models have been proposed to address these deficiencies, including use of an unsteady gas jet model to improve momentum transfer predictions in under-resolved regions of the spray, a vapor particle model to minimize numerical diffusion effects, and a Radius of Influence drop collision model to ensure consistent collision computations on different meshes.
Journal Article

An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine

2010-04-12
2010-01-0864
This study investigates the potential of controlling premixed charge compression ignition (PCCI) combustion strategies by varying fuel reactivity. In-cylinder fuel blending using port fuel injection of gasoline and early cycle, direct-injection of diesel fuel was used for combustion phasing control at a medium engine load of 9 bar net IMEP and was also found to be effective to prevent excessive rates of pressure rise. Parameters used in the experiments were guided from the KIVA-CHEMKIN code with a reduced primary reference fuel (PRF) mechanism including injection timings, fuel percentages, and intake valve closing (IVC) timings for dual-fuel PCCI combustion. The engine experiments were conducted with a conventional common rail injector (i.e., wide angle and large nozzle hole) and demonstrated control and versatility of dual-fuel PCCI combustion with the proper fuel blend, SOI and IVC timings.
Journal Article

An Optical Investigation of Ignition Processes in Fuel Reactivity Controlled PCCI Combustion

2010-04-12
2010-01-0345
The ignition process of fuel reactivity controlled PCCI combustion was investigated using engine experiments and detailed CFD modeling. The experiments were performed using a modified all metal heavy-duty, compression-ignition engine. The engine was fueled using commercially available gasoline (PON 91.6) and ULSD diesel delivered through separate port and direct injection systems, respectively. Experiments were conducted at a steady state-engine load of 4.5 bar IMEP and speed of 1300 rev/min. In-cylinder optical measurements focused on understanding the fuel decomposition and fuel reactivity stratification provided through the charge preparation. The measurement technique utilized point location optical access through a modified cylinder head with two access points in the firedeck. Optical measurements of natural thermal emission were performed with an FTIR operating in the 2-4.5 μm spectral region.
Journal Article

Clean Diesel Combustion by Means of the HCPC Concept

2010-04-12
2010-01-1256
Homogeneous-charge, compression-ignition (HCCI) combustion is triggered by spontaneous ignition in dilute homogeneous mixtures. The combustion rate must be reduced by suitable solutions such as high rates of Exhaust Gas Recirculation (EGR) and/or lean mixtures. HCCI is considered a very effective way to reduce engine pollutant emissions, however only a few HCCI engines have entered into production. HCCI combustion currently cannot be extended to the whole engine operating range, especially to high loads, since the use of EGR displaces air from the cylinder, limiting engine mean effective pressure, thus the engine must be able to operate also in conventional mode. This paper concerns a study of an innovative concept to control HCCI combustion in diesel-fuelled engines. The concept consists in forming a pre-compressed homogeneous charge outside the cylinder and gradually admitting it into the cylinder during the combustion process.
Technical Paper

An Experimental Study of Dual Fueling with Gasoline Port Injection in a Single-Cylinder, Air-Cooled HSDI Diesel Generator

2010-04-12
2010-01-0869
An experimental study was conducted on an air cooled high-speed, direct-injection diesel generator that investigated the use of gasoline in a dual fuel PCCI strategy. The single-speed generator used in the study has an effective compression ratio of 17 and runs at 3600 rev/min. Varying amounts of gasoline were introduced into the combustion chamber through a port injection system. The generator uses an all-mechanical diesel fuel injection system that has a fixed injection timing. The experiments explored variable intake temperatures and fuel split quantities to investigate different combustion phasing regimes. Results from the study showed low combustion efficiency at low load. Low load operation was also characterized by high levels of HC and CO (in excess of 20 g/kwh and 50 g/kwh respectively). Operation at 75% load was more efficient, and displayed three different combustion regimes that are possible with PIG (port injected gasoline) dual fuel PCCI.
Technical Paper

A Computational Investigation of Stepped-Bowl Piston Geometry for a Light Duty Engine Operating at Low Load

2010-04-12
2010-01-1263
The objective of this investigation is to optimize a light-duty diesel engine in order to minimize soot, NOx, carbon monoxide (CO), unburned hydrocarbon (UHC) emissions and peak pressure rise rate (PPRR) while improving fuel economy in a low oxygen environment. Variables considered are the injection timings, fractional amount of fuel per injection, half included spray angle, swirl, and stepped-bowl piston geometry. The KIVA-CHEMKIN code, a multi-dimensional computational fluid dynamics (CFD) program with detailed chemistry is used and is coupled to a multi-objective genetic algorithm (MOGA) along with an automated grid generator. The stepped-piston bowl allows more options for spray targeting and improved charge preparation. Results show that optimal combinations of the above variables exist to simultaneously reduce emissions and fuel consumption. Details of the spray targeting were found to have a major impact on the combustion process.
Technical Paper

Improving Diesel Engine Performance Using Low and High Pressure Split Injections for Single Heat Release and Two-Stage Combustion

2010-04-12
2010-01-0340
This study explores an Adaptive Injection Strategy (AIS) that employs multiple injections at both low and high pressures to reduce spray-wall impingement, control combustion phasing, and limit pressure rise rates in a Premixed Compression Ignition (PCI) engine. Previous computational studies have shown that reducing the injection pressure of early injections can prevent spray-wall impingement caused by long liquid penetration lengths. This research focuses on understanding the performance and emissions benefits of low and high pressure split injections through experimental parametric sweeps of a 0.48 L single-cylinder test engine operating at 2000 rev/min and 5.5 bar nominal IMEP. This study examines the effects of 2nd injection pressure, EGR, swirl ratio, and 1st and 2nd injection timing, for both single heat release and two-peak high temperature heat release cases. In order to investigate the AIS concept experimentally, a Variable Injection Pressure (VIP) system was developed.
Technical Paper

Engine Development Using Multi-dimensional CFD and Computer Optimization

2010-04-12
2010-01-0360
The present work proposes a methodology for diesel engine development using multi-dimensional CFD and computer optimization. A multi-objective genetic algorithm coupled with the KIVA3V Release 2 code was used to optimize a high speed direct injection (HSDI) diesel engine for passenger car applications. The simulations were conducted using high-throughput computing with the CONDOR system. An automated grid generator was used for efficient mesh generation with 11 variable piston bowl geometry parameters. The first step in the procedure was to search for an optimal nozzle and piston bowl design. In this case, spray targeting, swirl ratio, and piston bowl shape were optimized separately for two full-load cases using simpler efficient combustion models (the characteristic time scale model and the shell ignition model). The optimal designs from the two optimizations were then validated using a combustion model with detailed chemistry (KIVA-CHEMKIN model and ERC n-heptane mechanism).
Technical Paper

Investigation of NOx Predictions from Biodiesel-fueled HCCI Engine Simulations Using a Reduced Kinetic Mechanism

2010-04-12
2010-01-0577
A numerical study was performed to compare the formation of nitric oxide (NO) and nitrogen dioxide (NO₂), collectively termed NOx, resulting from biodiesel and diesel combustion in an internal combustion engine. It has been shown that biodiesel tends to increase NOx compared to diesel, and to-date, there is no widely accepted explanation. Many factors can lead to increased NOx formation and it was of interest to determine if fuel chemistry plays a significant role. Therefore, in order to isolate the fuel chemistry from mixing processes typical in a compression ignition engine, sprays were not considered in the present investigation. The current study compares the NOx formation of surrogates for biodiesel (as represented by methyl butanoate and n-heptane) and diesel (n-heptane) under completely homogeneous conditions. Combustion of each fuel was simulated using the Senkin code for both an adiabatic, constant volume reactor, and an adiabatic, single-zone HCCI engine model.
Journal Article

Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending

2009-11-02
2009-01-2647
This study investigates the potential of controlling premixed charge compression ignition (PCCI and HCCI) combustion strategies by varying fuel reactivity. In-cylinder fuel blending using port fuel injection of gasoline and early cycle direct injection of diesel fuel was used for combustion phasing control at both high and low engine loads and was also effective to control the rate of pressure rise. The first part of the study used the KIVA-CHEMKIN code and a reduced primary reference fuel (PRF) mechanism to suggest optimized fuel blends and EGR combinations for HCCI operation at two engine loads (6 and 11 bar net IMEP). It was found that the minimum fuel consumption could not be achieved using either neat diesel fuel or neat gasoline alone, and that the optimal fuel reactivity required decreased with increasing load. For example, at 11 bar net IMEP, the optimum fuel blend and EGR rate for HCCI operation was found to be PRF 80 and 50%, respectively.
Journal Article

Optical Diagnostics and Multi-Dimensional Modeling of Spray Targeting Effects in Late-Injection Low-Temperature Diesel Combustion

2009-11-02
2009-01-2699
The effects of spray targeting on mixing, combustion, and pollutant formation under a low-load, late-injection, low-temperature combustion (LTC) diesel operating condition are investigated by optical engine measurements and multi-dimensional modeling. Three common spray-targeting strategies are examined: conventional piston-bowl-wall targeting (152° included angle); narrow-angle floor targeting (124° included angle); and wide-angle piston-bowl-lip targeting (160° included angle). Planar laser-induced fluorescence diagnostics in a heavy-duty direct-injection optical diesel engine provide two-dimensional images of fuel-vapor, low-temperature ignition (H2CO), high-temperature ignition (OH) and soot-formation species (PAH) to characterize the LTC combustion process.
Journal Article

Effect of Mesh Structure in the KIVA-4 Code with a Less Mesh Dependent Spray Model for DI Diesel Engine Simulations

2009-06-15
2009-01-1937
Two different types of mesh used for diesel combustion with the KIVA-4 code are compared. One is a well established conventional KIVA-3 type polar mesh. The other is a non-polar mesh with uniform size throughout the piston bowl so as to reduce the number of cells and to improve the quality of the cell shapes around the cylinder axis which can contain many fuel droplets that affect prediction accuracy and the computational time. This mesh is specialized for the KIVA-4 code which employs an unstructured mesh. To prevent dramatic changes in spray penetration caused by the difference in cell size between the two types of mesh, a recently developed spray model which reduces mesh dependency of the droplet behavior has been implemented. For the ignition and combustion models, the Shell model and characteristic time combustion (CTC) model are employed.
Journal Article

Experimental Investigation of Intake Condition and Group-Hole Nozzle Effects on Fuel Economy and Combustion Noise for Stoichiometric Diesel Combustion in an HSDI Diesel Engine

2009-04-20
2009-01-1123
The goal of this research is to investigate the physical parameters of stoichiometric operation of a diesel engine under a light load operating condition (6∼7 bar IMEP). This paper focuses on improving the fuel efficiency of stoichiometric operation, for which a fuel consumption penalty relative to standard diesel combustion was found to be 7% from a previous study. The objective is to keep NOx and soot emissions at reasonable levels such that a 3-way catalyst and DPF can be used in an aftertreatment combination to meet 2010 emissions regulation. The effects of intake conditions and the use of group-hole injector nozzles (GHN) on fuel consumption of stoichiometric diesel operation were investigated. Throttled intake conditions exhibited about a 30% fuel penalty compared to the best fuel economy case of high boost/EGR intake conditions. The higher CO emissions of throttled intake cases lead to the poor fuel economy.
Journal Article

An Experimental Investigation into Diesel Engine Size-Scaling Parameters

2009-04-20
2009-01-1124
With recent increases in global fuel prices there has become a growing interest in expanding the use of diesel engines in the transportation industry. However, new engine development is costly and time intensive, requiring many hours of expensive engine tests. The ability to accurately predict an engine's performance based on existing models would reduce the expense involved in creating a new engine of different size. In the present study experimental results from two single-cylinder direct injection diesel engines were used to examine previously developed engine scaling models. The first scaling model was based on an equal spray penetration correlation. The second model considered both equal spray penetration and flame lift-off length. The engines used were a heavy-duty Caterpillar engine with a 2.44L displacement and a light-duty GM engine with a 0.48L displacement.
Journal Article

Sources of UHC Emissions from a Light-Duty Diesel Engine Operating in a Partially Premixed Combustion Regime

2009-04-20
2009-01-1446
Sources of unburned hydrocarbon (UHC) emissions are examined for a highly dilute (10% oxygen concentration), moderately boosted (1.5 bar), low load (3.0 bar IMEP) operating condition in a single-cylinder, light-duty, optically accessible diesel engine undergoing partially-premixed low-temperature combustion (LTC). The evolution of the in-cylinder spatial distribution of UHC is observed throughout the combustion event through measurement of liquid fuel distributions via elastic light scattering, vapor and liquid fuel distributions via laser-induced fluorescence, and velocity fields via particle image velocimetry (PIV). The measurements are complemented by and contrasted with the predictions of multi-dimensional simulations employing a realistic, though reduced, chemical mechanism to describe the combustion process.
X